Profssoren

Research Groups at IIKT

Chair for high frequency- and communication technology


Prof. Dr.-Ing. Abbas Omar

 The chair represents the two fields of research and teaching in radio frequency engineering and communication technology. In addition to fundamental research in these areas, the main focus of the chair is on electromagnetic imaging (ground penetrating radar), indoor positioning (real-time localization and tracking), metrological material characterization and RF circuitry technology. Students are welcome to participate in the chair's research within the scope of technical projects, bachelor and master theses. In well-equipped laboratories, measurements can be taken or prototypes built up.

Research focus:

  • Antennas for the 5G communication standard ("massive MIMO")
  • Out- and indoor positioning systems
  • Ground penetrating radar systems 
  • Adaptive channel estimation and characterization for wireless communication 
  • Analysis and design of different microwave components based on a circular structure

 

Chair for cognitive systems


Prof. Dr. rer. nat. Andreas Wendemuth

The Cognitive Systems group has in-depth knowledge in speech recognition, emotion and disposition recognition from speech, and their application in human-machine interactions. The focus is in the recognition of user emotions and - dispositions and the user-situatedness of spoken language, i.e. how the user is embedded into his environment and what intentions are pursued by the user. Crucial investigations include the labeling, speaker adaptation, analysis and design of dialogues in human-machine interaction, especially in the border area of possible dialog disruptions. Another focus is drawn on data fusion to enable a classification and evaluation of parallel incoming multimodal data strings. 

Research focus:

  • Intelligent Dialogue Management Strategies and Companion Systems (DFG: SFB TRR 62)
  • Autonomous Driving: Higher Safety by Detecting Driver Conditions (EU: ADAS & ME)
  • Ambient Assisted Living: intelligent sensors for home assistance (BMBF: Mova3D)
  • Detection of indirectly expressed actions: generic models in human-machine interactions (BMBF: MOD3D)
  • Multimodal assistance systems with multiple-person situations: Understanding of the interaction (LSA: IAIS)

 

Chair of hardware-oriented technical computer science


Prof. Dr.-Ing. Thilo Pionteck

The chair Hardware-Oriented Technical Computer Science researches new architectural concepts for the realization of runtime-adaptive, performance- and energy efficient digital systems. Both dedicated hardware accelerators in the basis of dynamical reconfigurable FPGAs and combined hardware/software systems are considered. Applications from embedded systems and high performance computing are of interest, since their contradicting requirements on energy efficiency, flexibility, performance, and size prohibit a realization with traditional hardware- and software solutions. Of special interest are applications such as database systems, sensor fusion in medical context, and electronic image correction.

 Research focus:

 

  • On-chip interconnect architectures for 3D SoCs, especially Network-on-Chip (NoC)
  • Runtime-adaptive (hybrid) hardware/software systems
  • Partial reconfiguration of FPGAs
  • Heterogeneous system architectures
  • Processing of multimodal data for human computer interaction

 

Group for neuro-information technology


apl. Prof. Dr.-Ing. habil. Ayoub Al-Hamadi

The professorship for Neuro-Information Technology (NIT) is located technically at the intersection of the research fields multisensory information gathering and processing, human-machine interaction (HMI) and information perception. This involves at first the use of modern methods of information technology and pattern recognition for signal, image and video-based industrial and medical applications. In addition to exploration and research of algorithms and interaction techniques for specific areas, the claim is to develop even more versatile techniques in real application areas (like prototype), such as medicine, security and mobility, and automotive and production.

 

Research focus:

  • 3D object recognition and measurement
  • Object tracking and event detection
  • Facial expression based emotion and gesture analysis as well as action recognition
  • Handwriting recognition and interpretation
  • Multi-robot plan recognition and self-organization

Last Modification: 23.02.2018 - Contact Person:

Sie können eine Nachricht versenden an: Dipl.-Wirt.-Inform. Dennis Winkler
Sicherheitsabfrage:
Captcha
 
Lösung: