Cognitive Neuroscience II Lecture 7

Prof. Dr. Andreas Wendemuth

Lehrstuhl Kognitive Systeme
Institut für Elektronik, Signalverarbeitung und Kommunikationstechnik

Fakultät für Elektrotechnik und Informationstechnik
Otto-von-Guericke Universität Magdeburg
http://iesk.et.uni-magdeburg.de/ko/

Resumé of previous lecture 6

- Hebbian-type rules are biologically plausible and motivated
- Ocular dominance is a prominent example which can be modelled with Hebb rules

8 Plasticity and Learning

- 2. May Hebb Rules, PCA

Hebb Rules

- Donald Hebb (1949): If input from neuron A contributes to firing of neuron B, the synaptic strength / weight w from A to B should be strengthened.
- Basic (linear) Hebb rule for one pattern:

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=F(v \mathbf{u})=v \mathbf{u}
$$

Recall firing rate equation

- Fir. Rate eq.:
- Linear version:

$$
\tau_{r} \frac{d v}{d t}=-v+F\left(\mathbf{w}^{*} \mathbf{u}\right)
$$

$$
\tau_{r} \frac{d v}{d t}=-v+\mathbf{w}^{*} \mathbf{u}
$$

has strong deficiencies (unlimited growth, $2^{\text {nd }}$ order statistics) but for the moment is easier to handle.

- Hebb learning is much slower than firing dynamics, hence $\tau_{w} \gg \tau_{r}$ and the firing dynamics can be assumed in equilibrium for Hebb learning, i.e. $\quad v=\mathbf{w}^{*} \mathbf{u}$

Hebb Rule for equilibrium firing

- Obtain $\quad \tau_{\mathbf{w}} \frac{d \mathbf{w}}{d t}=v \mathbf{u}=\left(\mathbf{u u}^{T}\right)^{*} \mathbf{w}=\mathbf{Q}^{*} \mathbf{w}$
- ($\mathbf{u u}^{T}$) is an outer product, i.e. forms the input correlation matrix \mathbf{Q} with components $Q_{i j}=\left(\mathbf{u u}^{T}\right)_{i j}=u_{i} u_{j}$
- If we have an ensemble of p input patterns, these can be presented one after the other (sequential learning), or, almost equivalently, -as a thought model - in parallel, which leads to averaging

$$
<(.)>=\frac{1}{p} \sum_{\mu=1}^{p}(.)
$$

with
$\tau_{w} \frac{d \mathbf{w}}{d t}=\left\langle v^{\mu} \mathbf{u}^{\mu}\right\rangle=\left\langle\mathbf{Q}^{\mu}>* \mathbf{w}\right.$ or $\tau_{w} \frac{d w_{k}}{d t}=\left\langle v^{\mu} u_{k}^{\mu}\right\rangle=\sum_{i=1}^{N}\left\langle Q_{k i}^{\mu}\right\rangle w_{i}$

Unlimited growth of $|\mathbf{w}|$

, „Multiplying" the Hebb rule $\tau_{w} \frac{d \mathbf{w}}{d t}=v \mathbf{u}$ with \mathbf{w} :
$\tau_{\mathbf{w}} \frac{d|\mathbf{w}|^{2}}{d t}=2 \tau_{w} \frac{d \mathbf{w}}{d t} * \mathbf{w}=($ Hebb $)=2 v \mathbf{w} * \mathbf{u}=($ Fir.Rate $)=2 v^{2} \geq 0$
i.e. the length (norm) of \mathbf{w} will increase in every learning step, sequential or parallel, (other than in trivial cases $\mathbf{v}=0$). Since $v=\mathbf{w}^{*} \mathbf{u} \propto|w|$, these increases will add up unlimitedly.

- This is a consequence of the linearization of the activation function F. If F saturates, growth is limited.

The Covariance Rule

- The basic Hebb rule can be interpreted as modelling the difference in activity against a base level. In this case, the mean $<u>=0$.
- If $<\mathrm{u}>\neq 0$, we subtract it as a presynaptic threshold, arriving at $\tau_{w} \frac{d \mathbf{w}}{d t}=v(\mathbf{u}-<\mathbf{u}>)=\left((\mathbf{u}-<\mathbf{u}>) \mathbf{u}^{T}\right) * \mathbf{w}$
- Since $\mathbf{C}=<(\mathbf{u}-<\mathbf{u}>)(\mathbf{u}-<\mathbf{u}>)^{T}>=<(\mathbf{u}-<\mathbf{u}>) \mathbf{u}^{T}>$ is the input covariance matrix, we get for $<\mathrm{u}>\neq 0$ the covariance rule $\quad \tau_{w} \frac{d \mathbf{w}}{d t}=\mathbf{C} * \mathbf{w}$

Ex 1

- a) Show $\left.<(\mathbf{u}-<\mathbf{u}>)(\mathbf{u}-<\mathbf{u}>)^{T}>=<(\mathbf{u}-<\mathbf{u}>) \mathbf{u}^{T}\right\rangle$
- b) Show that the same effect of covariance normalization can be reached by subtracting a postsynptic threshold, i.e. show that

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=(v-<v>) \mathbf{u}
$$

also leads to

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=\mathbf{C} * \mathbf{w}
$$

Solution of Hebbian dynamics

- The Hebb rule (pattern-averaged or not)

$$
\tau_{\mathbf{w}} \frac{d \mathbf{w}}{d t}=\mathbf{C} * \mathbf{w} \quad \text { where } \mathbf{Q} \text { is regarded as a }
$$ solved by eigenvalue decomposition of \mathbf{C} with eigenvalues λ_{j} and eigenvectors $\mathbf{e}^{\mathbf{j}}$.

$$
\mathbf{w}(t)=\sum_{j=1}^{N}\left(\mathbf{e}^{j} * \mathbf{w}^{j}(t=0)\right) \mathbf{e}^{j} \exp \left(\frac{\lambda_{j}}{\tau_{\mathbf{w}}} t\right)
$$

- The $\mathbf{e}^{j *} \mathbf{w}^{j}(t=0)$ are the projections of the initial weights on the eigenvectors.

Ex 2:

- Show that the covariance rule

$$
\tau_{\mathrm{w}} \frac{d \mathbf{w}}{d t}=\mathbf{C}^{*} \mathbf{w}
$$

has the solution

$$
\mathbf{w}(t)=\sum_{j=1}^{N}\left(\mathbf{e}^{j} * \mathbf{w}^{j}(t=0)\right) \mathbf{e}^{j} \exp \left(\frac{\lambda_{j}}{\tau_{w}} t\right)
$$

Long-time development

- If the initial weight vector ($\mathrm{t}=0$) has components in all eigenvector directions, the long-time development will be governed by the largest eigenvalue, i.e.

$$
\mathbf{w}(t) \xrightarrow{t \rightarrow \infty} \mathbf{e}^{j=\max } \exp \left(\frac{\lambda_{\max }}{\tau_{w}} t\right)
$$

- The eigenvector with largest eigenvalue is called the principal eigenvector.
- Clearly, |w| will grow unlimitedly.

Principal component analysis (1)

- The eigenvectors of a covariance matrix (!) select the directions of an approximative Gaussian multinomial distribution. Large eigenvalues correspond to large variances. Example: Gaussian data:

Eigenvalues of Covariance Matrix

- Eigenvalue conditions: $\lambda \mathbf{v}=\mathbf{C v}=\sum_{\mu} \mathbf{u}^{\mu} \mathbf{u}^{\mu^{T}} \mathbf{v}$
- Multiply from left with \mathbf{v}^{T} :

$$
\lambda=\mathbf{v}^{\mathrm{T}} \lambda \mathbf{v}=\mathbf{v}^{\mathrm{T}} \mathbf{C} \mathbf{v}=\sum_{\mu} \mathbf{v}^{\mathrm{T}} \mathbf{u}^{\mu} \mathbf{u}^{\mu^{T}} \mathbf{v}=\sum_{\mu}\left(\mathbf{u}^{\mu^{T}} \mathbf{v}\right)^{2} \geq 0
$$

- The last sum is called a „perfect square"
\checkmark Hence the eigenvalues of a real-valued covariance matrix are not negative.

Principal component analysis (2)

- Note that if the distribution of patters is nonGaussian, a best Gaussian fit to the data is assumed implicitely by PCA.
- Non-Gaussian distributions have central correlation moments of higher order, $\quad<(\mathbf{u}-<\mathbf{u}>)^{n}>\neq 0$ for some $n=3,4, \ldots$.
- These are not modelled by PCA. Neural models with nonlinear activation function model those so-called higher order statistics. (higher than 2)

Example: ocular dominance (1)

- Consider a single layer 4 cell which receives input from 2 LGN afferents, associated with the 2 eyes (R,L), with activities u. Both eyes are statistically equivalent.
- Cov.: $\mathbf{Q}=<\mathbf{u u}^{T}>=\left(\begin{array}{ll}\left\langle u_{R} u_{R}\right\rangle & \left\langle u_{R} u_{L}\right\rangle \\ \left.<u_{L} u_{R}\right\rangle & \left.<u_{L} u_{L}\right\rangle\end{array}\right)=\left(\begin{array}{cc}q_{S} & q_{D} \\ q_{D} & q_{S}\end{array}\right)$
where „S"=Same and „D"=Different
\checkmark PCA: $e^{1}=(1,1) ; \lambda_{1}=q_{S}+q_{D} \quad e^{2}=(1,-1) ; \lambda_{2}=q_{S}-q_{D}$

Ocular dominance (2)

- If correlation between eyes is positive, $\mathrm{q}_{\mathrm{D}}>0$. Then the principal eigenvector is $e^{1}=(1,1) ; \lambda_{1}=q_{S}+q_{D} \quad$, representing the combined weight vector $w_{R}+w_{L}$.
- After some Hebbian Learning time, the weights will be proportional to $w_{R}+w_{L}$, whereas the other eigenvector is suppressed, i.e. $w_{R}-w_{L} \rightarrow 0$.
- This means that both eyes contribute equal innervation, so no ocular dominance occurs.
- Hebb has failed ?????

Ex 3

- Derive the ocular dominance behaviour with Hebbian learning in the simple presented model.

Ocular dominance with saturation (3)

- With the (biologically plausible) saturation of weights $0<w<w_{\text {max }}$, the outcome of Hebbian learning depends on the initial overlaps $\mathrm{e}^{*} \mathrm{w}$ and the products $\lambda \mathrm{t}$:
- If „few" time has elapsed and saturation is already reached, the outcome is rather determined by the initial overlaps than by the largest eigenvalue [here $=(1,-1)]$:

The Oja rule (1982)

- The Oja rule affects weight normalization by only requiring information local to the synapses, $\tau_{w} \frac{d \mathbf{w}}{d t}=v \mathbf{u}-\alpha v^{2} \mathbf{w}$ but "w (multiplicative normalization):
- The weights grow as:

$$
\begin{aligned}
& \tau_{w} \frac{d|\mathbf{w}|^{2}}{d t}=2 \tau_{w} \frac{d \mathbf{w}}{d t} * \mathbf{w}=(O j a)=2 v \mathbf{w} * \mathbf{u}-2 \alpha v^{2}|\mathbf{w}|^{2} \\
& =(\text { Fir.rate })=2 v^{2}\left(1-\alpha|\mathbf{w}|^{2}\right) \\
& \text { so finally weights are normalized }|\mathbf{w}|^{2}=1 / \alpha
\end{aligned}
$$

Oja Rule (2)

- Expressing the Oja Rule fully in terms of w:

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=\left(\mathbf{C}-\alpha\left(\mathbf{w}^{T} * \mathbf{C} * \mathbf{w}\right) \mathbf{I}\right) * \mathbf{w}
$$

- This is highly nonlinear in \mathbf{w}. Writing \mathbf{w} in C-eigenvector coordinates gives for component k :

$$
\tau_{w} \frac{d w_{k}}{d t}=\left(\lambda_{k}-\alpha \sum_{j} \lambda_{j} w_{j}^{2}\right) w_{k}
$$

- Since the sum term is the same for all components k, the maximum in () will be at component k with maximum λ. So the Oja rule selects the principal component of \mathbf{C} as well.

Oja rule (3)

- After some time, all components other than w_{1} have been suppressed, and we obtain

$$
\tau_{w} \frac{d w_{1}}{d t}=\left(1-\alpha w_{1}^{2}\right) \lambda_{1} w_{1}
$$

\checkmark Even though the factor λ_{1} would increase w_{1}, this increase is brought to a halt by the factor $\left(1-\alpha w_{1}^{2}\right)$ which will not allow for a further increase after $|\mathrm{w}|^{2}=1 / \alpha$, which we saw already.

Subtractive Normalization (1)

- A biologically non-plausible (non-local) way of suppressing the principal eigenvector \mathbf{e}^{1} is to force the solution to be orthogonal to it:

$$
\tau_{\mathrm{w}} \frac{d \mathbf{w}}{d t}=v \mathbf{u}-v\left(\mathbf{e}^{\left.\mathbf{1}^{*} \mathbf{u}\right) \mathbf{e}^{1} \quad \text { [subtr. normalization] }}\right.
$$

- The orthogonality is strictly enforced:

$$
\tau_{w} \frac{d\left(\mathbf{e}^{1} \mathbf{w}\right)}{d t}=v \mathbf{e}^{1} \mathbf{u}-v\left(\mathbf{e}^{1} * \mathbf{u}\right)\left(\mathbf{e}^{1} \mathbf{e}^{1}\right)=0
$$

Subtractive Normalization (2)

- Writing \mathbf{w} and \mathbf{u} in \mathbf{C}-eigenvector coordinates gives for component $\mathrm{k} \neq 1: \tau_{w} \frac{d w_{k}}{d t}=\lambda_{k} w_{k}$ hence standard Hebbian behaviour. Of course an initial component of \mathbf{w} in these directions is required.
- For the component $\mathrm{k}=1$ we show the behaviour as follows:

Subtractive Normalization (3)

- Writing all vectors $\mathbf{w , u}$ with a component in $\mathbf{e}^{1}-$ direction and a component (') orthogonal to \mathbf{e}^{1} gives:

$$
\tau_{w} \frac{d\left[\left(\mathbf{e}^{1 *} \mathbf{w}\right) \mathbf{e}^{1}+\mathbf{w}^{\prime}\right]}{d t}=v\left[\left(\mathbf{e}^{1 *} \mathbf{u}\right) \mathbf{e}^{1}+\mathbf{u}^{\prime}\right]-v\left(\mathbf{e}^{1 *} \mathbf{u}\right) \mathbf{e}^{1}=v \mathbf{u}^{\prime}
$$

- Hence $\tau_{w} \frac{d\left[\left(\mathbf{e}^{1 *} \mathbf{w}\right) \mathbf{e}^{1}\right]}{d t}=0$,i.e. the component of the initial weight vector in \mathbf{e}^{1}-direction is never changed.

Multiple Subtractive Normalization (4)

- Subtraction of the k largest eigenvectors can be enforced by setting

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=v \mathbf{u}-v \sum_{j=1}^{k}\left(\mathbf{e}^{k *} \mathbf{u}\right) \mathbf{e}^{k}
$$

- This can be used to have several neurons be sensitive to the largest, $2^{\text {nd }}$ largest,.. , $\mathrm{k}^{\text {th }}$ largest eigenvector.

Subtractive Normalization combined with Oja rule (1)

- Combining both rules gives:

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=v \mathbf{u}-v\left(\mathbf{e}^{1 *} \mathbf{u}\right) \mathbf{e}^{1}-\alpha v^{2} \mathbf{w}
$$

- Again, we write this rule in C-eigenvector coordinates. $\mathrm{k}=1$ gives: $\quad \tau_{\mathrm{w}} \frac{d w_{1}}{d t}=-\alpha v^{2} w_{1}$
i.e. the first component will decay exponentially.
- This is better than the former subtractive normalization where the initial value $\mathrm{w}_{1}(\mathrm{t}=0)$ remained.

Subtractive Normalization combined with Oja rule (2)

- Generally:

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=\left(\mathbf{C}-\alpha v^{2} \mathbf{I}\right) \mathbf{w}-v\left(\mathbf{e}^{1 *} \mathbf{u}\right) \mathbf{e}^{1}
$$

- In C-eigenvector components, $\mathrm{k} \neq 1$:

$$
\tau_{w} \frac{d w_{k}}{d t}=\left(\lambda_{k}-\alpha \sum_{j} \lambda_{j} w_{j}^{2}\right) w_{k}
$$

has Oja characteristics.

- Summary: exponential decay in first ev, selection of $2^{\text {nd }}$ largest ev, weight normalization.

Ocular dominance with subtractive normalization + Oja(1)

\checkmark Recalling $\mathbf{Q}=<\mathbf{u u}^{T}>=\left(\begin{array}{cc}<u_{R} u_{R}> & <u_{R} u_{L}> \\ <u_{L} u_{R}> & <u_{L} u_{L}>\end{array}\right)=\left(\begin{array}{ll}q_{S} & q_{D} \\ q_{D} & q_{S}\end{array}\right)$

- We use subtractive normalization + Oja with

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=v \mathbf{u}-0.5 v\left(u_{R}+u_{L}\right)\binom{1}{1}-\alpha v^{2} \mathbf{w}
$$

- The time-discrete version is:

$$
\Delta \mathbf{w}=\frac{\Delta t}{\tau_{w}}\left[v \mathbf{u}-0.5 v\left(u_{R}+u_{L}\right)\binom{1}{1}-\alpha v^{2} \mathbf{w}\right] \text { and } v=\mathbf{u}^{*} \mathbf{w}
$$

Ocular dominance with subtractive normalization + Oja (2)

- Choose different $\mathbf{w}(\mathrm{t}=0)$ and let the sequence of ($\mathrm{u}_{\mathrm{R}}, \mathrm{u}_{\mathrm{L}}$) be mean-free $(<\mathrm{u}>=0)$ to avoid the need for covariances:
$\checkmark \mathrm{u}_{\mathrm{R}}=1,2,1,-1,-2,-1$ and cyclic repetition $\mathrm{u}_{\mathrm{L}}=2,1,-1,-2,-1,1$ and cyclic repetition
\bullet This gives a reasonable $\mathrm{q}_{\mathrm{S}}=2$ and $\mathrm{q}_{\mathrm{D}}=1$, and $<\mathrm{u}_{\mathrm{R}}>=<\mathrm{u}_{\mathrm{L}}>=0$.

$$
\text { Let } \frac{\Delta t}{\tau_{w}}=1 / 100
$$

Ocular dominance: Initial conditions 1:

- Let $\alpha=1$ which should lead to $|\mathbf{w}|=1$, i.e. with suppression of first ev., to $w_{1}=-w_{2}= \pm 0.7$
- w-plane (left)

$$
\mathrm{w}_{1}-\mathrm{w}_{2} / \mathrm{w}_{1}+\mathrm{w}_{2} \text { (right) }
$$

Andreas Wendemuth, Otto-von-Guericke-Universität Magdeburg, SS 2006

Ocular dominance: Initial conditions 2:

- Initial condition = first ev. : since ($\mathrm{u}_{\mathrm{R}}, \mathrm{u}_{\mathrm{L}}$) have fluctuations, this leads, after a long time, to $2^{\text {nd }}$ largest ev .
- w-plane (left)

$$
\mathrm{w}_{1}-\mathrm{w}_{2} / \mathrm{w}_{1}+\mathrm{w}_{2} \text { (right) }
$$

Ocular dominance: Initial conditions n:

- Live demo !!!

Ex 4

- Play with the combined Subtr. Normalization/ Oja rule in provided matlab programme!
- Examine the role of:
- Initial w-values
- Initial w-normalization b
- Final w-normalization a
- Removing Subtr. Normalization and/or Oja terms
- Changing the time factor

Resumé: Hebb Rules and PCA

- PCA forces multinomial Gaussian distribution on data, i.e. is sensitive only to $2^{\text {nd }}$ order statistics.
- Basic Hebb Rule selects for w the principal eigenvector of the data‘s correlation matrix, w grows unlimitedly.
- Subtractive normaliz. suppresses the principal ev.(s)
- Oja‘s rule normalizes w.
- Combined rule still works locally and biologically plausible, if prior knowledge exists about desired \mathbf{w}-behaviour suppression.
- Simple one-cell ocular dominance model can be realized.

