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Resumé of previous lecture 6
uHebbian-type rules are biologically plausible and 

motivated
uOcular dominance is a prominent example which can 

be modelled with Hebb rules
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8 Plasticity and Learning
u02. May Hebb Rules, PCA



Andreas Wendemuth, Otto-von-Guericke-Universität Magdeburg, SS 2006
4

Hebb Rules
uDonald Hebb (1949): If input from neuron A 

contributes to firing of neuron B, the synaptic 
strength / weight w from A to B should be 
strengthened.

uBasic (linear) Hebb rule for one pattern:
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Recall firing rate equation
u Fir. Rate eq.:

u Linear version:
has strong deficiencies (unlimited growth, 2nd order 
statistics) but for the moment is easier to handle.

uHebb learning is much slower than firing dynamics, 
hence                and the firing dynamics can be assumed
in equilibrium for Hebb learning, i.e.  
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Hebb Rule for equilibrium firing
uObtain
u is an outer product, i.e. forms the input corre-

lation matrix Q with components
u If we have an ensemble of p input patterns, these can be 

presented one after the other (sequential learning), or, almost 
equivalently, –as a thought model – in parallel, which leads 
to averaging                                         with

or    
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Unlimited growth of |w|
u „Multiplying“ the Hebb rule                      with w:

i.e. the length (norm) of w will increase in every 
learning step, sequential or parallel,  (other than in 
trivial cases v=0) . Since                      , these 
increases will  add up unlimitedly.

u This is a consequence of the linearization of the 
activation function F. If F saturates, growth is limited.
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The Covariance Rule
u The basic Hebb rule can be interpreted as  modelling 

the difference in activity against a base level. In this 
case, the mean <u>=0.

u If <u>≠0, we subtract it as a presynaptic threshold, 
arriving at 

u Since
is the input covariance matrix, we get for <u> ≠ 0 the 
covariance rule
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Ex 1
ua) Show
ub) Show that the same effect of covariance 

normalization can be reached by subtracting a 
postsynptic threshold, i.e. show that 

also leads to 
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Solution of Hebbian dynamics
uThe Hebb rule (pattern-averaged or not)

where Q is regarded as a 
special case of C, can be 

solved by eigenvalue decomposition of C with
eigenvalues λj and eigenvectors ej.

uThe                       are the projections of the 
initial weights on the eigenvectors.
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Ex 2:
uShow that the covariance rule 

has the solution
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Long-time development 
uIf the initial weight vector (t=0) has 

components in all eigenvector directions, the 
long-time development will be governed by 
the largest eigenvalue, i.e.  

uThe eigenvector with largest eigenvalue is 
called the principal eigenvector. 

uClearly, |w| will grow unlimitedly.
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Principal component analysis (1)
u The eigenvectors of a covariance matrix (!) select the 

directions of an approximative Gaussian multinomial 
distribution. Large eigenvalues correspond to large 
variances. Example: Gaussian data:
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Eigenvalues of Covariance Matrix
uEigenvalue conditions:
uMultiply from left with vT:

uThe last sum is called a „perfect square“
uHence the eigenvalues of a real-valued 

covariance matrix are not negative. 
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Principal component analysis (2)
uNote that if the distribution of patters is non-

Gaussian, a best Gaussian fit to the data is assumed 
implicitely by PCA. 

uNon-Gaussian distributions have central correlation 
moments of higher order,                               
for some n = 3,4,.... 

u These are not modelled by PCA.  Neural models with 
nonlinear activation function model those so-called 
higher order statistics. (higher than 2)

0)( >≠><−< nuu
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Example: ocular dominance (1)
u Consider a single layer 4 cell which receives input 

from 2 LGN afferents, associated with the 2 eyes
(R,L), with activities u. Both eyes are statistically 
equivalent. 

u Cov.: 

where „S“=Same and „D“=Different
u PCA: 
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Ocular dominance (2)
u If correlation between eyes is positive, qD > 0. Then 

the principal eigenvector is                                    , 
representing the combined weight vector                 .

uAfter some Hebbian Learning time, the weights will 
be proportional to                , whereas the other 
eigenvector is suppressed, i.e.                        .

u This means that both eyes contribute equal 
innervation, so no ocular dominance occurs.

uHebb has failed ?????   
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Ex 3
uDerive the ocular dominance behaviour with 

Hebbian learning in the simple presented 
model. 
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Ocular dominance with saturation (3)
u With the (biologically 

plausible) saturation of 
weights 0<w<wmax, the 
outcome of Hebbian learning 
depends on the initial overlaps 
e*w and the products λt:

u If „few“ time has elapsed and 
saturation is already reached, 
the outcome is rather 
determined by the initial 
overlaps than by the largest 
eigenvalue [here  = (1,-1)]:
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The Oja rule (1982)
u The Oja rule affects weight normalization by only 

requiring information 
local to the synapses,
but w (multiplicative normalization):

u The weights grow as:

so finally weights are normalized  
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Oja Rule (2)
u Expressing the Oja Rule fully in terms of w: 

u This is highly nonlinear in w. Writing w in C-eigenvector 
coordinates gives for component k:

u Since the sum term is the same for all components k, the 
maximum in () will be at component k with maximum λ. So 
the Oja rule selects the principal component of C as well.
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Oja rule (3)
uAfter some time, all components other than w1

have been suppressed, and we obtain

uEven though the factor λ 1 would increase w1, 
this increase is brought to a halt by the factor 

which will not allow for a further 
increase after                ,which we saw already.     
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Subtractive Normalization (1)
uA biologically non-plausible (non-local) way 

of suppressing the principal eigenvector e1 is
to force the solution to be orthogonal to it:

[subtr. normalization]

uThe orthogonality is strictly enforced: 
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Subtractive Normalization (2)
uWriting w and u in C-eigenvector coordinates 

gives for component k≠1:                            , 

hence standard Hebbian behaviour. Of course an 
initial component of w in these directions is 
required.  

uFor the component k=1 we show the behaviour as 
follows:
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Subtractive Normalization (3)
uWriting all vectors w,u with a component in e1 –

direction and a component (‘) orthogonal to e1 gives:

uHence                                ,i.e. the component of the 

initial weight vector in e1 –direction is never changed.
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Multiple Subtractive Normalization (4)
uSubtraction of the k largest eigenvectors can 

be enforced by setting

uThis can be used to have several neurons be 
sensitive to the largest, 2nd largest, ... , kth

largest eigenvector. 
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Subtractive Normalization combined 
with Oja rule (1)

uCombining both rules gives:

uAgain, we write this rule in C-eigenvector 
coordinates. k=1 gives:

i.e. the first component will decay exponentially. 
uThis is better than the former subtractive normal-

ization where the initial value w1(t=0) remained.
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Subtractive Normalization combined 
with  Oja rule (2)
uGenerally:

uIn C-eigenvector components, k ≠ 1 : 

has Oja characteristics.
uSummary: exponential decay in first ev, 

selection of 2nd largest ev, weight normalization. 
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Ocular dominance with subtractive 
normalization + Oja(1)
uRecalling

uWe use subtractive normalization + Oja with 

uThe time-discrete version is:  
and 
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Ocular dominance with subtractive 
normalization + Oja (2)
uChoose different w(t=0) and let the sequence 

of (uR, uL) be mean-free (< u >=0) to avoid the 
need for covariances:

uuR =1,2,1,-1,-2,-1 and cyclic repetition 
uL =2,1,-1,-2,-1,1 and cyclic repetition

uThis gives a reasonable qS = 2 and qD = 1, and 
< uR >=< uL > =0.

u Let 100/1=Δ

w

t
τ
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Ocular dominance: Initial conditions 1:
u Let α=1 which should lead to |w|=1, i.e. with

suppression of first ev., to w1 = -w2 =±0.7 
uw-plane (left) w1-w2 / w1 +w2 (right)
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Ocular dominance: Initial conditions 2:
u Initial condition = first ev. : since (uR, uL) have fluctu-

ations, this leads, after a long time, to 2nd largest ev.
uw-plane (left) w1-w2 / w1 +w2 (right)
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Ocular dominance: Initial conditions n:
uLive demo !!!
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Ex 4
uPlay with the combined Subtr. Normalization/ 

Oja rule in provided matlab programme!
uExamine the role of:

– Initial w-values
– Initial w-normalization b
– Final w-normalization a
– Removing Subtr. Normalization and/or Oja terms
– Changing the time factor
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Resumé: Hebb Rules and PCA
u PCA forces multinomial Gaussian distribution on data, i.e. is 

sensitive only to 2nd order statistics.
u Basic Hebb Rule selects for w the principal eigenvector of the 

data‘s correlation matrix, w grows unlimitedly. 
u Subtractive normaliz. suppresses the principal ev.(s)
u Oja‘s rule normalizes w.
u Combined rule still works locally and biologically plausible, if 

prior knowledge exists about desired w-behaviour suppression. 
u Simple one-cell ocular dominance model can be realized. 


