Cognitive Neuroscience II Lecture 7

Prof. Dr. Andreas Wendemuth

Lehrstuhl Kognitive Systeme Institut für Elektronik, Signalverarbeitung und Kommunikationstechnik

Fakultät für Elektrotechnik und Informationstechnik Otto-von-Guericke Universität Magdeburg

http://iesk.et.uni-magdeburg.de/ko/

Resumé of previous lecture 6

- Hebbian-type rules are biologically plausible and motivated
- Ocular dominance is a prominent example which can be modelled with Hebb rules

8 Plasticity and Learning

▼ 02. May Hebb Rules, PCA

Hebb Rules

- Donald Hebb (1949): If input from neuron A contributes to firing of neuron B, the synaptic strength / weight w from A to B should be strengthened.
- Basic (linear) Hebb rule for one pattern:

$$\tau_{w} \frac{d\mathbf{w}}{dt} = F(v\mathbf{u}) = v\mathbf{u}$$

Recall firing rate equation

- Fir. Rate eq.: $\tau_r \frac{dv}{dt} = -v + F(\mathbf{w} * \mathbf{u})$
- Linear version: $\tau_r \frac{dv}{dt} = -v + \mathbf{w} * \mathbf{u}$ has strong deficiencies (unlimited growth, 2nd order statistics) but for the moment is easier to handle.
 - Hebb learning is much slower than firing dynamics, hence $\tau_w >> \tau_r$ and the firing dynamics can be assumed in equilibrium for Hebb learning, i.e. $v = \mathbf{w} * \mathbf{u}$

Hebb Rule for equilibrium firing

- Obtain $\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} = (\mathbf{u}\mathbf{u}^T) * \mathbf{w} = \mathbf{Q} * \mathbf{w}$
- $(\mathbf{u}\mathbf{u}^T)$ is an *outer product*, i.e. forms the *input correlation matrix* \mathbf{Q} with components $Q_{ij} = (\mathbf{u}\mathbf{u}^T)_{ij} = u_i u_j$
- If we have an ensemble of p input patterns, these can be presented one after the other (sequential learning), or, almost equivalently, –as a thought model – in parallel, which leads to averaging $\langle ... \rangle = \frac{1}{p} \sum_{\mu=1}^{p} (.)$ with $\tau_w \frac{d\mathbf{w}}{dt} = \langle v^{\mu} \mathbf{u}^{\mu} \rangle = \langle \mathbf{Q}^{\mu} \rangle * \mathbf{w}$ Or $\tau_w \frac{dw_k}{dt} = \langle v^{\mu} u_k^{\mu} \rangle = \sum_{i=1}^{N} \langle Q_{ki}^{\mu} \rangle w_i$

Unlimited growth of $|\mathbf{w}|$

- "Multiplying" the Hebb rule $\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u}$ with **w**: $\tau_w \frac{d|\mathbf{w}|^2}{dt} = 2\tau_w \frac{d\mathbf{w}}{dt} * \mathbf{w} = (Hebb) = 2v\mathbf{w} * \mathbf{u} = (Fir.Rate) = 2v^2 \ge 0$ i.e. the length (norm) of **w** will increase in every learning step, sequential or parallel, (other than in trivial cases v=0). Since $v = \mathbf{w} * \mathbf{u} \propto |w|$, these increases will add up unlimitedly.
 - This is a consequence of the linearization of the activation function F. If F saturates, growth is limited.

The Covariance Rule

- The basic Hebb rule can be interpreted as modelling the difference in activity against a base level. In this case, the mean <u>=0.
- If $\langle \mathbf{u} \rangle \neq 0$, we subtract it as a *presynaptic threshold*, arriving at $\tau_w \frac{d\mathbf{w}}{dt} = v(\mathbf{u} - \langle \mathbf{u} \rangle) = ((\mathbf{u} - \langle \mathbf{u} \rangle)\mathbf{u}^T) * \mathbf{w}$
- Since $\mathbf{C} = \langle (\mathbf{u} \langle \mathbf{u} \rangle)(\mathbf{u} \langle \mathbf{u} \rangle)^T \rangle = \langle (\mathbf{u} \langle \mathbf{u} \rangle)\mathbf{u}^T \rangle$ is the input *covariance* matrix, we get for $\langle \mathbf{u} \rangle \neq 0$ the <u>covariance rule</u> $\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{C} * \mathbf{w}$

Ex 1

also leads

- ▼ a) Show $<(u < u >)(u < u >)^T > = <(u < u >)u^T >$
- b) Show that the same effect of covariance normalization can be reached by subtracting a *postsynptic threshold*, i.e. show that

to

$$\tau_{w} \frac{d\mathbf{w}}{dt} = (v - \langle v \rangle)\mathbf{u}$$

$$\tau_{w} \frac{d\mathbf{w}}{dt} = \mathbf{C} * \mathbf{w}$$

Solution of Hebbian dynamics

 The Hebb rule (pattern-averaged or not) $\tau_{w} \frac{d\mathbf{w}}{dt} = \mathbf{C} * \mathbf{w}$ where **Q** is regarded as a special case of **C**, can be solved by eigenvalue decomposition of C with eigenvalues λ_j and eigenvectors \mathbf{e}^j . $\mathbf{w}(t) = \sum_{j=1}^{N} (\mathbf{e}^j * \mathbf{w}^j (t=0)) \mathbf{e}^j \exp(\frac{\lambda_j}{\tau_w} t)$ \bullet The $\mathbf{e}^j * \mathbf{w}^j (t=0)$ are the projections of the initial weights on the eigenvectors.

Show that the covariance rule

$$\tau_{w} \frac{d\mathbf{w}}{dt} = \mathbf{C} * \mathbf{w}$$

has the solution

$$\mathbf{w}(t) = \sum_{j=1}^{N} \left(\mathbf{e}^{j} * \mathbf{w}^{j} (t=0) \right) \mathbf{e}^{j} \exp\left(\frac{\lambda_{j}}{\tau_{w}}t\right)$$

Long-time development

 If the initial weight vector (t=0) has components in all eigenvector directions, the long-time development will be governed by the *largest eigenvalue*, i.e.

$$\mathbf{w}(t) \xrightarrow{t \to \infty} \mathbf{e}^{j=\max} \exp(\frac{\lambda_{\max}}{\tau_w} t)$$

- The eigenvector with largest eigenvalue is called the *principal* eigenvector.
- Clearly, |w| will grow unlimitedly.

Principal component analysis (1)

 The eigenvectors of a covariance matrix (!) select the directions of an approximative Gaussian multinomial distribution. Large eigenvalues correspond to large variances. Example: Gaussian data:

Eigenvalues of Covariance Matrix

- Eigenvalue conditions: $\lambda \mathbf{v} = \mathbf{C}\mathbf{v} = \sum \mathbf{u}^{\mu}\mathbf{u}^{\mu^{T}}\mathbf{v}$
- Multiply from left with \mathbf{v}^{T} :

$$\lambda = \mathbf{v}^{\mathrm{T}} \lambda \mathbf{v} = \mathbf{v}^{\mathrm{T}} \mathbf{C} \mathbf{v} = \sum_{\mu} \mathbf{v}^{\mathrm{T}} \mathbf{u}^{\mu} \mathbf{u}^{\mu^{T}} \mathbf{v} = \sum_{\mu} (\mathbf{u}^{\mu^{T}} \mathbf{v})^{2} \ge 0$$

- ▼ The last sum is called a ,,perfect square"
- Hence the eigenvalues of a real-valued covariance matrix are not negative.

Principal component analysis (2)

- Note that if the distribution of patters is non-Gaussian, a best Gaussian fit to the data is assumed implicitly by PCA.
- Non-Gaussian distributions have central correlation moments of higher order, $< (\mathbf{u} - < \mathbf{u} >)^n > ≠ 0$ for some n = 3,4,....
- These are not modelled by PCA. Neural models with nonlinear activation function model those so-called *higher order statistics*. (higher than 2)

Example: ocular dominance (1)

 Consider a single layer 4 cell which receives input from 2 LGN afferents, associated with the 2 eyes (R,L), with activities u. Both eyes are statistically equivalent.

• Cov.:
$$\mathbf{Q} = \langle \mathbf{u} \mathbf{u}^T \rangle = \begin{pmatrix} \langle u_R u_R \rangle & \langle u_R u_L \rangle \\ \langle u_L u_R \rangle & \langle u_L u_L \rangle \end{pmatrix} = \begin{pmatrix} q_S & q_D \\ q_D & q_S \end{pmatrix}$$

where ,,S"=Same and ,,D"=Different

• PCA:
$$e^1 = (1,1)$$
; $\lambda_1 = q_s + q_D$ $e^2 = (1,-1)$; $\lambda_2 = q_s - q_D$

Ocular dominance (2)

- If correlation between eyes is positive, $q_D > 0$. Then the principal eigenvector is $e^1 = (1,1)$; $\lambda_1 = q_s + q_D$, representing the combined weight vector $w_R + w_L$.
- After some Hebbian Learning time, the weights will be proportional to $w_R + w_L$, whereas the other eigenvector is suppressed, i.e. $w_R - w_L \rightarrow 0$.
- This means that both eyes contribute equal innervation, so no ocular dominance occurs.
- ✓ Hebb has failed ?????

Ex 3

 Derive the ocular dominance behaviour with Hebbian learning in the simple presented model.

Ocular dominance with saturation (3)

- With the (biologically plausible) saturation of weights 0<w<w_{max}, the outcome of Hebbian learning depends on the initial overlaps e*w and the products λt:
- If "few" time has elapsed and saturation is already reached, the outcome is rather determined by the initial overlaps than by the largest eigenvalue [here = (1,-1)]:

The Oja rule (1982)

- The Oja rule affects weight normalization by only requiring information local to the synapses, $\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} \alpha v^2 \mathbf{w}$ but "w (multiplicative normalization):
- The weights grow as: $\tau_{w} \frac{d |\mathbf{w}|^{2}}{dt} = 2\tau_{w} \frac{d\mathbf{w}}{dt} * \mathbf{w} = (Oja) = 2v\mathbf{w} * \mathbf{u} - 2\alpha v^{2} |\mathbf{w}|^{2}$ $= (Fir.rate) = 2v^{2}(1 - \alpha |\mathbf{w}|^{2})$ so finally weights are normalized $|\mathbf{w}|^{2} = 1/\alpha$

Oja Rule (2)

• Expressing the Oja Rule fully in terms of w:

$$\tau_{w} \frac{d\mathbf{w}}{dt} = \left(\mathbf{C} - \alpha (\mathbf{w}^{T} * \mathbf{C} * \mathbf{w})\mathbf{I}\right) * \mathbf{w}$$

 This is highly nonlinear in w. Writing w in C-eigenvector coordinates gives for component k:

$$\tau_{w} \frac{dw_{k}}{dt} = \left(\lambda_{k} - \alpha \sum_{j} \lambda_{j} w_{j}^{2}\right) w_{k}$$

Since the sum term is the same for all components k, the maximum in () will be at component k with maximum λ. So the Oja rule selects the principal component of C as well.

Oja rule (3)

 After some time, all components other than w₁ have been suppressed, and we obtain

$$\tau_{w} \frac{dw_{1}}{dt} = \left(1 - \alpha w_{1}^{2}\right)\lambda_{1}w_{1}$$

• Even though the factor λ_1 would increase w_1 , this increase is brought to a halt by the factor $(1 - \alpha w_1^2)$ which will not allow for a further increase after $|w|^2 = 1/\alpha$, which we saw already.

Subtractive Normalization (1)

- ▼ A biologically non-plausible (non-local) way of suppressing the principal eigenvector \mathbf{e}^1 is to force the solution to be orthogonal to it: $\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} - v(\mathbf{e}^{1*}\mathbf{u})\mathbf{e}^1$ [subtr. normalization]
- The orthogonality is strictly enforced: $\tau_{w} \frac{d(\mathbf{e}^{1}\mathbf{w})}{dt} = v\mathbf{e}^{1}\mathbf{u} - v(\mathbf{e}^{1}*\mathbf{u})(\mathbf{e}^{1}\mathbf{e}^{1}) = 0$

Subtractive Normalization (2)

• Writing w and u in C-eigenvector coordinates gives for component $k \neq 1$: $\tau_w \frac{dw_k}{dt} = \lambda_k w_k$,

hence standard Hebbian behaviour. Of course an initial component of **w** in these directions is required.

For the component k=1 we show the behaviour as follows:

Subtractive Normalization (3)

✓ Writing all vectors w,u with a component in e¹ – direction and a component (') orthogonal to e¹ gives: $\tau_{w} \frac{d\left[(\mathbf{e}^{1*}\mathbf{w})\mathbf{e}^{1} + \mathbf{w'}\right]}{dt} = v[(\mathbf{e}^{1*}\mathbf{u})\mathbf{e}^{1} + \mathbf{u'}] - v(\mathbf{e}^{1*}\mathbf{u})\mathbf{e}^{1} = v\mathbf{u'}$

• Hence $\tau_w \frac{d[(\mathbf{e}^{\mathbf{1}*}\mathbf{w})\mathbf{e}^{\mathbf{1}}]}{dt} = 0$, i.e. the component of the

initial weight vector in e^1 –direction is never changed.

Multiple Subtractive Normalization (4)

 Subtraction of the k largest eigenvectors can be enforced by setting

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} - v\sum_{j=1}^k (\mathbf{e}^k * \mathbf{u})\mathbf{e}^k$$

 This can be used to have several neurons be sensitive to the largest, 2nd largest, ..., kth largest eigenvector.

Subtractive Normalization combined with Oja rule (1)

Combining both rules gives:

$$\tau_w \frac{d\mathbf{w}}{dt} = v\mathbf{u} - v(\mathbf{e}^{1*}\mathbf{u})\mathbf{e}^1 - \alpha v^2 \mathbf{w}$$

► Again, we write this rule in C-eigenvector coordinates. k=1 gives: $\tau_w \frac{dw_1}{dt} = -\alpha v^2 w_1$

i.e. the first component will decay exponentially.

 This is better than the former subtractive normalization where the initial value w₁(t=0) remained.

Subtractive Normalization combined with Oja rule (2)

- Generally: $\tau_w \frac{d\mathbf{w}}{dt} = (\mathbf{C} - \alpha v^2 \mathbf{I})\mathbf{w} - v(\mathbf{e}^{1*}\mathbf{u})\mathbf{e}^{1}$
- In C-eigenvector components, $k \neq 1$: $\tau_{w} \frac{dw_{k}}{dt} = \left(\lambda_{k} - \alpha \sum_{j} \lambda_{j} w_{j}^{2}\right) w_{k}$

has Oja characteristics.

 Summary: exponential decay in first ev, selection of 2nd largest ev, weight normalization.

Ocular dominance with subtractive normalization + Oja(1)

• Recalling
$$\mathbf{Q} = <\mathbf{u}\mathbf{u}^T > = \begin{pmatrix} & \\ & \end{pmatrix} = \begin{pmatrix} q_S & q_D \\ q_D & q_S \end{pmatrix}$$

• We use subtractive normalization + Oja with

$$\tau_{w} \frac{d\mathbf{w}}{dt} = v\mathbf{u} - 0.5v(u_{R} + u_{L}) \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \alpha v^{2}\mathbf{w}$$

• The time-discrete version is:

$$\Delta \mathbf{w} = \frac{\Delta t}{\tau_w} \left[v \mathbf{u} - 0.5 v (u_R + u_L) \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \alpha v^2 \mathbf{w} \right] \text{ and } v = \mathbf{u} * \mathbf{w}$$

Ocular dominance with subtractive normalization + Oja (2)

- Choose different w(t=0) and let the sequence of (u_R, u_L) be mean-free (< u >=0) to avoid the need for covariances:
- $u_R = 1, 2, 1, -1, -2, -1$ and cyclic repetition $u_L = 2, 1, -1, -2, -1, 1$ and cyclic repetition
- This gives a reasonable $q_S = 2$ and $q_D = 1$, and $< u_R > = < u_L > = 0.$ • Let $\frac{\Delta t}{\tau_w} = 1/100$

Ocular dominance: Initial conditions 1:

- Let $\alpha = 1$ which should lead to $|\mathbf{w}| = 1$, i.e. with suppression of first ev., to $w_1 = -w_2 = \pm 0.7$
- w-plane (left) $w_1 w_2 / w_1 + w_2$ (right)

Ocular dominance: Initial conditions 2:

- Initial condition = first ev. : since (u_R, u_L) have fluctuations, this leads, after a long time, to 2nd largest ev.
- w-plane (left) $w_1 w_2 / w_1 + w_2$ (right)

Ocular dominance: Initial conditions n:

Live demo !!!

Ex 4

- Play with the combined Subtr. Normalization/ Oja rule in provided matlab programme!
- Examine the role of:
 - Initial w-values
 - Initial w-normalization b
 - Final w-normalization a
 - Removing Subtr. Normalization and/or Oja terms
 - Changing the time factor

Resumé: Hebb Rules and PCA

- PCA forces multinomial Gaussian distribution on data, i.e. is sensitive only to 2nd order statistics.
- Basic Hebb Rule selects for w the principal eigenvector of the data's correlation matrix, w grows unlimitedly.
- Subtractive normaliz. suppresses the principal ev.(s)
- Oja's rule normalizes w.
- Combined rule still works locally and biologically plausible, if prior knowledge exists about desired w-behaviour suppression.
- Simple one-cell ocular dominance model can be realized.

