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Excitatory-Inhibitory Network

starting from the equation from the output rate

τr
dv
dt

= −v+F(h+M ·v) (1)

Dale’s law: neuron have either excitatory or inhibitory effects on all of their postsynaptic
targets

Maa′ strength of synapses from a′ to a

• neuron a′ excitatory → Maa′ > 0 ∀a

• neuron a′ inhibitory → Maa′ < 0 ∀a

describe these neurons separately

τE
dvE

dt
= −vE +FE(hE +MEE ·vE +MEIvI)

τI
dvI

dt
= −vI +FI(hI +MIE ·vE +MIIvI)

note, that a symmetric M violates Dale’s law

Illustration of the dynamics – a simple model

all excitatory neurons are described by a single firing rate vE , and all inhibitory neurons by
another single firing rate vI

F(·) threshold linear function
⇒

τE
dvE

dt
= −vE +[MEE · vE +MEIvI − γE ]+

τI
dvI

dt
= −vI +[MIE · vE +MIIvI − γI]+ (2)

We set MEE = 1.25, MiE = 1, MII = 0, MEI = −1, γE = −10 Hz, γI = 10 Hz , τE = 10 ms;
and we vary τI



dynamical behavior – fixed points

Nullclines, flow directions, and fixed points



stability Analysis

fixed point is

• stable → initial values of vE and vI near this point will be drawn toward it over time

• unstable → nearby configurations are pushed away from the fixed point

stability of the fixed point is determined by the real parts of the eigenvalues of the matrix
(

(MEE −1)/τE MEI/τE

MIE/τI (MII −1)/τI

)

.

eigenvalues are

real and imaginary part of the eigenvalue determining the stability of the fixed point
⇒ fixed point is stable for τI < 40 ms and unstable for larger values of τI



bifurcation: transition from a stable fixed points to a limit cycle

Exercise 1
Write a matlab program to analyze the dynamical behavior of the system of differential
equations (2). Plot also a phase-plane trajectory.



Stochastic Networks

consider the total input current of unit a with symmetric M (and see Eq. (1))

Ia(t) = ha(t)+
Nv

∑
a′=1

Maa′va′(t) (3)

Boltzmann machine: (stochastic neurons):
If single unit a is selected, then update is done as follows:
va is set to 1 with probability:

P[va(t +∆t) = 1] = F(Ia(t)), with F(Ia) =
1

1+ exp(−2βIa)
(4)

and to 0 otherwise; β = 1/T with "temperature" T .
Using update rule (4) v does not converge to a fixed point, but can be described by a
probability distribution

P[v] ∝ exp(−βE(v)), E(v) = −h ·v−
1
2

v ·M ·v (5)

associated with an energy function E(v).
Note: T = 0 in Eq. (4) ⇒ F(·) is threshold linear function and v evolves according to
Eq. (1).

statistical physics – Ising model

The idea of Eq. (4) can be derived with methods of statistical physics.

Gibbs sampling – canonical ensemble:
system with energy E(s) in a heat reservoir with temperature T is in the thermodynamical
equilibrium in state s with probability (Boltzmann distribution)

P(s) =
exp[−βE(s)]

Z
, (6)

with partition function Z ≡ ∑
s

exp[−βE(s)] and β = 1/(kT ).

System with two states:
example: single Ising spin in a magnetic field h:
s = ±1, E(s) = −sh

⇒ P(s = ±1) =
1

1+ exp(∓2βh)
(7)

Hopfield model:
set ha(t) ≡ 0 in Eq. (3) ⇒ Hopfield model (with stochastic neurons)
if T = 0 we have the deterministic Hopfield model (N recurrent neurons with threshold
linear function

Si = sgn

[

N

∑
j=1

Mi jS j

]

, Si = ±1 (8)



Ising model
physical analogy to the Hopfield model

H = −
1
2 ∑

i j
Mi jSiS j (9)

with Si = ±1
H (Hamiltonian) is an energy function for the Hopfield model, meaning that, if H → H ′

according to the dynamic of the Hopfield model, than H ′ ≤ H
Exercise 2: Show that for the deterministic Hopfield model (with Mii ≥ 0)

Ising model with

• T = 0: equivalent to deterministic Hopfield model

• T > 0: equivalent to Hopfield model with stochastic neurons

mean field approximation

is an general approximation in statistical physics
example: Ising model

for Hopfield model with stochastic neurons follows in mean field approximation

〈Si〉 = tanh(β∑
j

Mi j〈S j〉) (10)

Exercise 3: Do the mean field approximation for various temperatures using matlab for

Mi j =





0 0.5 0.3
0.5 0 0.4
0.3 0.4 0



 .


